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Multistrain diseases are diseases that consist of several strains, or serotypes. The serotypes may interact by
antibody-dependent enhancement �ADE�, in which infection with a single serotype is asymptomatic, but
infection with a second serotype leads to serious illness accompanied by greater infectivity. It has been
observed from serotype data of dengue hemorrhagic fever that outbreaks of the four serotypes occur asynchro-
nously. Both autonomous and seasonally driven outbreaks were studied in a model containing ADE. For
sufficiently small ADE, the number of infectives of each serotype synchronizes, with outbreaks occurring in
phase. When the ADE increases past a threshold, the system becomes chaotic, and infectives of each serotype
desynchronize. However, certain groupings of the primary and secondary infectives remain synchronized even
in the chaotic regime.
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I. INTRODUCTION

Recently there has been a wide range of work on chaotic
synchronization in dynamical systems �1,2�. When synchro-
nizing chaotic systems, almost all of the work deals with
coupled or connected systems �3� and analyzing their stabil-
ity. In biological systems, such as population models, syn-
chronization may result from coupling strengths being en-
hanced �4�, while desynchronization may take place as a
result of vaccine control as in measles �5�. In this work, we
consider the dynamics of a single population to shed light on
the phase dynamics of multistrain diseases �6�. The dynamics
observed exhibits phase-locked regular behavior, as well as
chaotic phase desynchronization between strains. Although
we consider a single population model, we use the term
“synchronization” to describe phase locking between vari-
ables �7�.

Many population models in the past have considered
single strain diseases, as in childhood diseases. In this case,
the population may be grouped into the following compart-
ments: susceptibles, infectives, and recovered �8�. With no
seasonal forcing included in the model, the only endemic
solution to the single strain SIR models is an equilibrium
point �9�.

However, many diseases have co-circulating strains, or
serotypes, such as influenza �10�, malaria �11�, and dengue
virus �12�. Such diseases display antigenic diversity, exhib-
iting distinct serotypes when measured. Recent efforts at
modeling multistrain diseases have explored the oscillatory
dynamics generated by multiple co-existing serotypes with
partial cross-immunity �10,13,14�. However, current thinking
regarding the interacting serotypes of dengue virus is that
cross-reactive antibodies act to enhance the infectiousness of
a subsequent infection by another serotype �15�. This is
known as antibody-dependent enhancement.

It has been shown through recent serology measurements
in Thailand that dengue fever, which has four co-circulating

serotypes, exhibits asynchronous outbreaks. That is, each se-
rotype has peaks that occur at different times �16� �see Fig. 7
in the Appendix�. Note that most observed infections are
secondary �16�, due to increased symptom severity.

In this paper, we analyze how the antibody-dependent en-
hancement �ADE� factor controls the onset of oscillatory
outbreaks, as well as how asynchronous secondary infections
are controlled dynamically.

II. DESCRIPTION OF MODEL

To model the spread of multistrain diseases, we follow the
approach of Ferguson et al. �17�, where they restrict the
model to two serotypes. Our modeling approach differs in
the general number of serotypes and in that all compartments
are distinct from one another. The full model for n serotypes
is described below. Our simulations will be based on four
serotypes, based on measured dengue data in Thailand �16�.

The variable definitions are as follows: s, susceptible to
all serotypes; xi, primary infectious with serotype i; ri, pri-
mary recovered from serotype i; xij, secondary infectious,
currently infected with serotype j, but previously had i
�i� j�. The model is a system of ODEs describing the rates
of change of the population fractions within each compart-
ment �18�,

ds

dt
= � − �s�

i=1

n

�xi + ��
j�i

xji� − �ds , �1�

dxi

dt
= �s�xi + ��

j�i

xji� − �xi − �dxi, �2�

dri

dt
= �xi − �ri�

j�i
�xj + ��

k�j

xkj� − �dri, �3�

dxij

dt
= �ri�xj + ��

k�j

xkj� − �xij − �dxij . �4�
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The parameters �, �d, �, and � denote birth, death, contact,
and recovery rates, respectively. We assume that individuals
who have recovered from two infections are immune to fur-
ther infection since tertiary infections are reported very
rarely �16�. The fixed parameters throughout the paper are
given by �=�d=0.02, �=200, and �=100, all with units of
years−1 �18�. �Mortality rate, �d, is set equal to the birth rate
so that the population remains constant in time.� Antibody-
dependent enhancement is governed by the parameter �,
which has not previously been measured for populations.
Notice that in Eqs. �1�–�4� ADE enters in a nonlinear en-
hancement factor when ��1. We use a single � for all
strains for ease of analysis. Thus any loss of synchrony be-
tween the strains will result not from asymmetry but from
the dynamics itself. Finally, notice that since the value of �
is small compared to � and �, it can be considered as a small
parameter.

III. RESULTS

A. Bifurcation structure

Unlike the usual SIR models for single strains, which in
the absence of forcing have only steady state behavior, the
addition of multiple serotypes can induce regular and chaotic
outbreaks. In particular, for a critical value of �, there exists
a Hopf bifurcation to periodic oscillations. See the bifurca-
tion diagram given in Fig. 1 for the transition from steady
state to oscillatory behavior as a function of �. The usual
trivial steady state, which has the population consisting of all
susceptibles �s=1� and the rest of the components at zero, is
unstable. �The trivial solution of Eqs. �1�–�4� with n=4 se-
rotypes has 4 unstable, 12 strongly attracting, and 5 weakly
attracting directions.� The nontrivial, or endemic, steady state
may be computed numerically for arbitrary �. At steady
state, we notice the following: �1� The primary infectives are
equal. �2� The recovered variables are equal. �3� All second-
ary infectives are equal.

Compartmental equality at steady state holds before the
Hopf bifurcation point as well as after the Hopf point �al-
though past the Hopf bifurcation point the steady state solu-
tion is unstable�. We make these assumptions about the
model at equilibrium, and the resulting local dynamics can
be reduced to a four-dimensional system,

dy1

dt
= � − n�y1y2 − n�n − 1���y1y4, �5�

dy2

dt
= �y1y2 + �n − 1���y1y4 − �y2, �6�

dy3

dt
= �y2 − �n − 1��y3y2 − �n − 1�2��y3y4, �7�

dy4

dt
= �y3y2 + �n − 1���y3y4 − �y4. �8�

Notice that for simplicity we have removed the mortality
terms in each of the variables, since they are of O��� and
have a negligible effect on the steady states. Moreover, re-
moving the mortality terms allows an analytical estimate of
the endemic steady states and stability. Mortality does need
to be included in the long time asymptotic runs, which we do
below. The reduced model has the following steady state
solution:

� �

��� + 1�
,

�

n�
,

�

�n − 1���� + 1�
,

�

n�n − 1��	 . �9�

Given the steady state solution as a function of � in Eq.
�9�, to compute the stability we need to evaluate the linear-
ization about the steady state. Therefore, we take the Jaco-
bian of the vector field of the reduced model about the steady
state and examine the characteristic polynomial for the ei-
genvalues. Recalling that � is a small parameter, we can
expand the solutions to the characteristic equation in terms of
�. Since the data in �16� displays four serotypes, the number
of serotypes is set to n=4. We have a strongly attracting
direction given by z1���=−�+O���, a weakly attracting di-
rection given by z2���=−�3����+1�2� / �4��+O��2�, and a
pair of complex eigenvalues,

z±��� =
�D���

8�
� ± i����3/2�1 − f���� + O��2� , �10�

where f�����0. The sign of the expression D���
3�2

−4�−4 determines the stability of the complex pair. Since �
is assumed to be greater than or equal to unity, D����0 if
�� �1,2� and positive otherwise. Therefore, the steady state
undergoes a Hopf bifurcation at �=2. The results are close
to numerical simulation, since mortality terms were dropped
in the analysis but included in the simulations.

Since the reduced model does not capture the asynchro-
nous behavior past the Hopf point, we continue our analysis
using the full model. As we increase � beyond the Hopf
point, the dynamics exhibits periodic time series, as plotted
in Fig. 2�a�. The susceptibles exhibit a period of approxi-
mately 5 years when �=1.725. The actual range of stable

FIG. 1. Bifurcation diagram for the autonomous model with �
=200, �=100, �=0.02. Shown for each � are the maxima �black�
and minima �gray� of the susceptibles during a 100 years run, after
transients were removed.
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periodic solution is quite small, and occurs over a �� of
0.004838. �See the quick transition to irregular oscillations
after the steady state in the bifurcation diagram given in Fig.
1.� Past the � value where periodic solutions become un-
stable, we find chaotic behavior, indicated by a positive
maximum Lyapunov exponent for most � values in that re-
gion. �The chaotic attractors persist over many initial condi-
tions chosen from a random distribution.� We note that in this
complicated region, there are small windows with attracting
limit cycles resulting in a zero maximum Lyapunov expo-
nent. Lyapunov exponents were computed by integrating lin-
ear variational equations along solutions to Eqs. �1�–�4�. We
show examples of chaotic oscillations in Figs. 2�b� and 2�c�
for short and long time series. Notice that in Fig. 2�c�, the
time series exhibits oscillatory regions which have a slowly
growing envelope, interspersed with chaotic intervals. We
will exploit this structure to examine how each serotype be-
haves dynamically.

B. Phase analysis

Since the measured data for dengue fever shows that the
serotypes oscillate out of phase, we investigate the phase of
primary and secondary infectives with respect to a particular
secondary infective in the full model of Eqs. �1�–�4�. To
measure phase differences with respect to a reference infec-

tive, let Y�t� denote the reference infective, and Z�t� another
infective. Let �tk� denote the sequence of times for local
maxima of Y�t�, and ��k� the times for local maxima of Z�t�.
For �m� �tk , tk+1�, define the phase of Z relative to Y in the
interval as 	ZY��m�=2
���m− tk� / �tk+1− tk��.

In Fig. 3, we compare the relative phases of infective
groups for �=1.73. For the secondary infective group x2,1,
we plot the intermaximum intervals in years in Fig. 3�a�.
Notice that during the nonchaotic times, the oscillation inter-
vals grow slowly, until they begin to vary in an irregular
manner during the chaotic phase. In panels �b� and �c�, a
direct comparison between x2,1 and the other groups is plot-
ted using the phase differencing equation 	ZY��m�, normal-
ized between −
 and 
. In panel �b�, all other infectives who
have serotype 1 as the current infection are practically in-
phase with group x2,1. In contrast, in panel �c�, all those
having serotype 1 as the primary infection, and currently a
different serotype as the secondary infection, lose synchroni-
zation when the dynamics exhibits chaotic behavior. During
the slow buildup phase, however, the groups are still syn-
chronized. Similar desynchronization during chaotic time se-
ries occurs for the other primary and secondary infectives
�not pictured here�.

FIG. 2. Time series plots of the susceptibles for the autonomous
case, where �=200, �=100, �=0.02. �a� Periodic case for ADE
factor �=1.725. �b� Chaotic case for �=1.73. �c� Longer time se-
ries for chaotic case, �=1.73, with sampling once a year.

FIG. 3. �Color online� Phase difference analysis of time series in
a chaotic region with �=1.73 for autonomous system. �a� Time
intervals between local maxima of secondary infective group x2,1.
�b� Phase differences between compartments currently infected with
serotype 1. Primary infective x1 and secondary infectives x3,1 and
x4,1 are compared to x2,1. Maxima occur in phase. �c� Comparison
between compartments currently infected with different serotypes.
Secondary infectives x1,2, x1,3, and x1,4 are compared to x2,1.
Maxima occur out of phase during chaotic intervals.
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C. Seasonally driven case

Although the analysis suggests that chaos is responsible
for the observed lag between serotypes, one could argue that
since there is a seasonal component to the disease, adding a
periodic forcing term should synchronize the serotypes, even
when they are chaotic. To address this issue, we modified the
model to include a contact rate that modulates with a period
of one year; i.e., ��t�=�0�1+�1 cos�2
t��, where �1 is the
forcing amplitude. ��1=0.05 was used in this study, but simi-
lar behavior is observed for other forcing amplitudes.� The
contact rate prefactor, �0=200, is constant as before. Analo-
gous to the Hopf bifurcation in the autonomous system, bi-
furcation onto a torus occurs at �c=1.7243. For an ADE
factor below �c, we observe periodic behavior, as shown in
Fig. 4�a�, while for an ADE factor just above �c, we find
quasiperiodic behavior, plotted in Figs. 4�b� and 4�c�. In
panel �c�, the time series of susceptibles was sampled at the
forcing period and plotted as successive iterates to show a
cross section of the torus. In both periodic and quasiperiodic
cases, the serotypes are all in phase, and there is no desyn-
chronization. However, for higher ADE, we find that the

driven system becomes chaotic, and there is desynchroniza-
tion.

Figure 5 shows the phase differences between the x2,1
secondary infective and other infectives, for an ADE factor
of �=1.74 and forcing amplitude �1=0.05, where the solu-
tion is chaotic. Notice that in the top panel, where the phase
differences are for other compartments currently infected
with serotype 1, there is phase synchrony on average when
compared to the case where the secondary infections are
from a different serotype �second panel�. Although the phase
synchrony is not as good as in the autonomous case in Fig. 3,
we can get a statistical measure showing how on average the
phase locking compares by computing a histogram of both
cases. This is shown in Fig. 6, where the grey bars corre-

FIG. 6. A histogram plot showing the statistics of the phase
differences between secondary infections and primary infections
from Fig. 5. Black bars: frequency of phase differences for com-
partments currently infected with serotype 1 �data from Fig. 5�a��,
gray bars: frequency of phase differences for compartments cur-
rently infected with different serotypes �data from Fig. 5�b��.

FIG. 4. Dynamics of seasonally driven ADE model, where �0

=200, �=100, �=0.02, and the forcing amplitude �1=0.05. �a�
Periodic time series of susceptible population, for the ADE factor
�=1.5. �b� Quasiperiodic time series of susceptibles, for �
=1.7244. �c� Projected time series sampled at intervals of 1 year for
the susceptible population, showing the quasiperiodicity �same pa-
rameters as in �b��.

FIG. 5. �Color online� Chaotic phase desynchronization in peri-
odically driven system. The ADE factor is �=1.74. �a� Phase dif-
ferences between compartments currently infected with serotype 1.
Primary infective x1 and secondary infectives x3,1 and x4,1 are com-
pared to x2,1. Maxima usually occur in phase. �b� Comparison be-
tween compartments currently infected with different serotypes.
Secondary infectives x1,2, x1,3, and x1,4 are compared to x2,1.
Maxima occur out of phase. �Windows of synchrony occur during
the oscillatory regions that have a slowly growing envelope.�
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spond to phase differences of Fig. 5�b�, and the black bars
correspond to the data from Fig. 5�a�. Notice that when com-
paring primary infections of serotype 1 to secondary infec-
tions that currently have serotype 1, there is a strong phase
locking component on average.

IV. CONCLUSIONS

We have derived and analyzed the dynamics of a model
for multistrain diseases with antibody-dependent enhance-
ment. The model for secondary infections, which includes
ADE as a parameter, adds a new wrinkle to models of the
SIR type. In previous studies of single strain models that do
not include environmental forcing, the endemic equilibrium
is the only possible stable state. That is, there are no bifur-
cations which give rise to dynamics exhibiting regular or
irregular outbreaks. In contrast, by modeling the effect of
ADE as an increase in infectivity of secondary infections, we
see both analytically and numerically that periodic outbreaks
appear at a critical ADE value. Moreover, the analysis re-
veals exactly how the period of oscillations depends on the
ADE parameter near the bifurcation point. The range of pe-
riods predicted for the parameters used in our computations
appears to agree well with those observed in the data in Fig.
7 in the Appendix.

When the ADE factor increases above a threshold, the
system’s behavior is chaotic, and outbreaks of different
strains occur asynchronously. This observation corresponds
qualitatively with epidemiological data on asynchronous out-
breaks of dengue fever �see Appendix�. Seasonal forcing,
thought to be a primary driver for the observed oscillations
in the different strains, is typically believed to disrupt any
out-of-phase behavior in the dynamics and force the entire
system to lock on the period of the forcing. However, in our
preliminary study, we find that this is not the case. Phase
desynchronization between serotypes occurs even in the

seasonally forced case.
However, there exists a specific relationship between the

primary and secondary infections. Specifically, we have ob-
served that although the different serotypes desynchronize
when the solutions are chaotic, there is surprising structure in
the peak outbreaks of the serotypes when comparing the ap-
propriate secondary infectives to the appropriate primary in-
fectives. Although there is no vaccine currently available for
all serotypes, the results here point to potential new methods
of analysis and monitoring of multistrain diseases. In the
field, the majority of the cases reported are secondary infec-
tions. Therefore, by observing a small percentage of the in-
cidence in the secondary infections of one serotype, synchro-
nization would imply that the data is representative of the
general behavior of all the groups infected with that sero-
type, including those with only a primary infection. Further
global analysis techniques based on center manifold methods
can be used to explain the synchronization of particular pri-
mary and secondary infectives when the time series becomes
chaotic; this approach is the subject of further study.
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APPENDIX: EPIDEMIOLOGICAL DATA

Figure 7, reprinted from �16�, shows the frequency of

FIG. 7. �Color online� Frequency of detection of each of the four Dengue virus types per month at the Queen Sirikit National Institute
for Child Health from 1973 to 1999. Reprinted from �16�.
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detection of each of the four dengue types at one hospital in
Bangkok, Thailand, over a continuous 27 year period of
monitoring. Infecting serotypes were defined by isolation of
replication-competent virus and/or detection of viral genome

in peripheral blood. �It should be noted that serological mea-
surements were performed for only a fraction of all dengue
cases.� Observe that peaks of the dengue virus types are
asynchronous.
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